Intensidade da corrente elétrica perigosa para humanos e animais domésticos

Adaptado do original: Centro de Referência para o Ensino de Física – IF/UFRGS


Li em algum lugar que a resistência do corpo humano de uma orelha a outra está na faixa de 100 Ohms. Como estou sempre mexendo com circuitos, fui procurar sobre a corrente elétrica necessária para desmaiar uma pessoa, acabei descobrindo que estava na faixa de 80 mA. Acontece que com uma resistência tão baixa, uma diferença de potencial de apenas 12 Volts seria suficiente pra derrubar um ser humano, acho que há algum erro nisso.

O interior do nosso corpo está repleto por uma solução iônica e, portanto, tem baixa resistividade elétrica.

A pele seca e intacta apresenta alta resistência elétrica como podes testar segurando as ponteiras de um ohmímetro, que medirá um valor da ordem de mega ohm. Se repetires a medida com pele úmida,  principalmente se molhares a pele com uma solução salina, o resultado será muito mais baixo.

Correntes da ordem de dezena de mili ampère já podem ser mortais, dependendo da região do nosso corpo que a conduz.

Sei de um acidente mortal envolvendo um menino que cortava grama de pés descalços, suado, quando por descuido cortou o cabo de alimentação do cortador.

Nos EUA evitam tensões residenciais supriores a 127 V por segurança.

Portanto depende de muitos fatores o que de fato acontecerá contigo se fores eletrificado em baixa tensão. Em 12 V certamente,  com a pele íntegra e seca, nada te acontecerá.

Na execução em cadeira elétrica os eletrodos em contato com a pele do condenado são conectados ao corpo através de uma solução iônica muito boa condutora. Neste caso, garantindo que a corrente circule pelo cérebro e tórax, a morte é rápida.

Mais perguntas interessantes:


Comentário do Prof. Renato Machado de Brito (Eng. Elétrica – UFRGS)

Pelo que eu aprendi, uma passagem de corrente de apenas 10 mA já seria suficiente para liquidar ou pelo menos desmaiar alguém.Tudo depende do tempo que durar.

Porém para iniciar uma corrente que percorra o nosso corpo é preciso uma tensão maior do que uns 80 Volts para vencer as camadas isolantes da pele e necrosá-las, atingindo-se então as camadas mais internas que são mais condutoras.

Em telefonia utilizavam-se baterias de 48 Volts, e nunca soube de alguém ter morrido por um choque neste nível de tensão, mesmo com as mãos molhadas.

Num automóvel com baterias de 12V, só se leva choque de alta tensão  no circuito das velas, e mesmo assim não mata ninguém pois são de curta duração.

Os choques elétricos acontecem normalmente em ambientes domésticos e podem provocar danos irreversíveis, mais por desconhecimento técnico e  de como agir numa situação de choque. Normalmente, se o circuito de corrente for aberto em pelo menos 10 segundos a pessoa escapa!

O problema é que os nossos músculos reagem à passagem de corrente, normalmente contraindo-se, assim não se consegue “largar” o fio, uma ferramenta, ou o equipamento que está em contato coma fonte de energia.
Por isso é importante que certos equipamentos tenham um cabo com três condutores (Fase,Neutro e Aterramento). Quase ninguém dá importância ao aterramento, mas não se pode confiar plenamente no isolamento dos circuitos internos com relação à carcaça. Se a carcaça estiver aterrada, no máximo o operador vai ficar em paralelo com o circuito de aterramento.

Gosto de contar uma história que aconteceu comigo lá na praia. Eu estava utilizando um ventilador portátil(dos antigos, de carcaça metálica) e quis mudá-lo de lugar para me refrescar melhor no meu quarto. Quando eu o peguei senti o choque (220V). Como não conseguia largá-lo, saltei para cima da cama e interrompi o circuito que havia entre o meu corpo e o piso frio de cerâmica, mas por certo impregnado de salinidade. Quem está preparado, em 10 segundos pode fazer muita coisa…

Por outro lado os choques podem ser benéficos, quando controlados, são utilizados em fisioterapia e desfibriladores, controlando-se a energia pulsada aplicada ao “paciente”.

Aprendi também em um curso de segurança lá em Berkeley que as sequelas dos choques que provocam danos nos tecidos são cumulativas.

Há casos de eletricistas expostos à choques frequentes que vão perdendo alguns movimentos ao logo dos anos, principalmente na região de braços, mãos e dedos.

Todo cuidado é pouco, mas o importante é saber reagir. Grande parte das pessoas morrem por desconhecimento e outras se salvam por sorte…


Comentários no Facebook

Carlo Requião Da Cunha – Vai depender também do caminho da corrente. Normalmente é muito mais fácil ter corrente pela pele do que através dela. Se tiver corrente pela pele de orelha a orelha é um problema. Se tiver corrente através da pele de orelha a orelha é outro problema…

Felipe Ely – Professor! Se você tiver tempo, aqui nesse PDF explicando o funcionamento do disjuntor DR da Siemens existe uma tabela muito boa da corrente vs tempo que pode passar pelo ser humano (percurso mão esquerda ao pé). http://www.industry.siemens.com.br/…

Guilherme Bach entra as mãos deu 2,2 Mohm. Nas orelhas deu 9 e 12 Mohm, com duas obturações de chumbo e pela desconfiança do professor Lang, vácuo no cérebro.

Luiz Tiarajú Loureiro – A resistência entre as duas mãos secas é da ordem de 300 kohm. O problema é que havendo um ferimento ou a pele estando molhada a resistência cai para 1000 ohm e as tensões usuais se tornam perigosas.

Luiz Tiarajú Loureiro – Segundo Dalziel, a corrente suportável por adultos de boa saúde com massa de 50 kg ou maior é dada por 0,116/(t**0,5), sendo t o tempo de circulação da corrente. Dalziel fez muitos trabalhos sobre isto e muitos fazem partes das normas IEC.

Luiz Eduardo Schardong Spalding – Ótimas informações, vou contribuir dizendo que há reações diferentes do corpo humano quando por ele incide um campo elétrico contínuo e alternado. No alternado o risco é maior. A contração muscular é maior em 60 Hz do que que em zero Hz (contínuo). Também há um reação diferente para tensões baixas ,como 20 Volts, e altas como 220V. A resistência do corpo também varia de acordo com a tensão aplicada.


Comentário do Prof. Luiz Eduardo Schardong Spalding (UPF) em 02/01/2016 sobre uma notícia sensacionalista da criança que morreu eletrocutada por colocar na boca a ponteira do carregador de um celular:

A respeito da possibilidade de carregadores de celular produzirem riscos de choque ou micro choque. Testei hoje 5 tipos de carregadores das marcas Nokia e Samsung. Em todos eles a corrente de fuga em 60 Hz não ultrapassou 3,0 micro Amperes. Desta forma, se os carregadores estiverem sem defeito, não creio que possam ter causado a morte de alguma pessoa. Considerando que há vários comentários na internet informando que a notícia é falsa, sugiro informar que a possibilidade somente existe se houver defeito no carregador.


Comentário do Eng. Frederico Branquinho Teixeira em 11/10/2016

Talvez a referência mais importante sobre esse assunto seja a norma IEC 60479 (NBR IEC 60479-1): Efeitos da corrente sobre seres humanos e animais domésticos). Ela apresenta um gráfico relacionando a intensidade e a duração de correntes elétricas (percurso mão esquerda até o pé) e os seus efeitos.

Em resumo, as zonas demarcadas no gráfico são:

  • AC-1: Nenhum efeito perceptível;
  • AC-2: Efeito perceptível, mas sem reação muscular;
  • AC-3: Contração muscular com efeitos reversíveis;
  • AC-4: Efeitos possivelmente irreversíveis;
  • AC-4.1: Até 5% de probabilidade de fibrilação ventricular;
  • AC-4.2: 5-50% de probabilidade de fibrilação ventricular;
  • AC-4.3: acima de 50% de probabilidade de fibrilação ventricular.

Os dispositivos de proteção contra choque elétrico, em especial os dispositivos de proteção à corrente diferencial residual (conhecidos como DR) são ajustados para atuar, isto é, interromper a passagem da corrente, em um valor razoavelmente seguro: 30 mA, dentro da faixa AC-2 do gráfico acima.

A instalação dos dispositivos DR é obrigatória pela norma NBR 5410 nos circuitos de áreas “molhadas” como banheiros, copas, garagens, etc, onde o risco de choque elétrico é maior em razão da diminuição da resistência do corpo em contato com a água.

Prof. Fernando Lang da Silveira – http://www.if.ufrgs.br/~lang/

Gráficos – Resistor Ôhmico

Adaptado do original: Prof Roberto Rech


Qual dos gráficos a seguir pode representar a resistência (R ), em função da secção transversal (S), de um fio condutor ôhmico de comprimento constante?

1ª Lei de Ohm – estabelece que um resistor pode ser dito ôhmico quando for constante a razão entre a diferença de potencial (ddp) ou tensão a que é submetido e a intensidade de corrente elétrica que o percorre.

2ª Lei de Ohm – estabelece a relação entre a resistência, o material do qual o resistor é construído e sua geometria, em geral as dimensões (comprimento e área de secção transversal)

Em termos de expressão:

R = \rho \frac{l}{S}

em que:

R  = resistência elétrica
rho = resistividade  (constante)
l = comprimento do condutor (constante para o caso apresentado)
S = área da secção transversal.

Para o problema apresentado, a resistência elétrica varia de acordo com a variação da área da secção transversal do condutor.
A função que relaciona R e S é uma função racional do tipo R = f(S) , pois o produto da resistividade pelo comprimento é constante. Portanto R é inversamente proporcional à área da secção transversal S do condutor.  Quando a variável independente está localizada no denominador, a função é dita racional. O gráfico de uma função racional é uma hipérbole equilátera, veja um exemplo da função y = 1 / x , pense em y como R e x como S :

Como a área é sempre um número positivo, vale apenas a assíntota (cada uma das partes da hipérbole equilátera) do primeiro quadrante, portanto a resposta correta está representada no gráfico da letra (c).

Máquina Eletrostática de Wimshurst

Adaptado do original: Antônio Carlos M. de Queiroz – http://www.coe.ufrj.br/~acmq/electrostatic.html


Máquinas de Wimshurst
Máquinas de Wimshurst simples

As máquinas eletrostáticas de influência geram altas tensões através de influência de campos elétricos, sem o uso de atrito para separar cargas. Pode-se dizer que todas elas funcionam como versões automatizadas do eletróforo de Volta (1776), ou do dobrador de Bennet (1787). Em todas elas, em algum momento da operação duas superfícies são aproximadas, estando uma delas carregada eletricamente e a outra aterrada. Isto atrai cargas para a superfície aterrada, de polaridade oposta à carga da superfície indutora. A seguir, o aterramento é removido e as superfícies são afastadas, o que requer energia, e aumenta enormemente o potencial elétrico das superfícies movimentadas. As cargas em alta tensão assim geradas são coletadas nos terminais da máquina por escovas, ou mais usualmente pentes metálicos providos de pontas voltadas para as superfícies carregadas. Nas máquinas de influência, usualmente existe ainda algum mecanismo para usar as cargas geradas para reforçar a carga inicial, e induzir a separação de ainda mais cargas.

Histórico:

A máquina de Wimshurst foi inventada na Inglaterra, por James Wimshurst, e primeiramente descrita em Janeiro de 1883. Na época já eram conhecidas outras máquinas de influência derelativamente alta potência, como as de Toepler, Holtz (1865) e Voss (1880), que eram todas algo problemáticas, principalmente devido às constantes reversões de polaridade a que eram sujeitas e à alta isolação elétrica requerida para operação eficiente. O elegante projeto da máquina de Wimshurst resolve estes dois problemas, por evitar o uso de superfícies indutoras fixas e por apresentar altas tensões apenas nas vizinhanças dos coletores de carga. A idéia, entretanto, teve curta utilidade prática. Na época a atenção da pesquisa sobre eletricidade estava voltada para aplicações práticas como iluminação elétrica, motores elétricos, telefonia e telegrafia, com muito da pesquisa básica, que se iniciou pela eletrostática, e utilizou extensivamente máquinas de atrito, já realizada. Houve uma retomada no interêsse por aplicações práticas para estas máquinas após a descoberta dos raios X em 1895, como fontes de alta tensão para acionar os tubos de Crookes, mas com o advento de eletrificação generalizada, logo fontes de energia mais confiáveis foram desenvolvidas, e as máquinas eletrostáticas de discos passaram a ser apenas dispositivos de demonstração. Atualmente, geradores eletrostáticos mecânicos são usados apenas em aceleradores de partículas, mas na forma mais conveniente para as altas tensões necessárias, do gerador de Van de Graaff (1931) e seus derivados.

Construção:

Máquina de WimshurstA máquina consiste em dois discos de material isolante, precisamente cortados e balanceados, originalmente de vidro envernizado ou ebonite, atualmente sendo mais conveniente usar acrílico ou outro plástico rígido, que giram em sentidos opostos sobre um mesmo eixo horizontal mantendo pequeno afastamento. Os discos são montados, colados ou aparafusados, sobre dois mancais, de madeira, metal ou outro material rígido, que giram livremente sobre um eixo fixo. Mancais de madeira devem possuir um tubo central de latão ou bronze, que gira bem lubrificado sobre o eixo de aço. Melhores resultados são obtidos com mancais suportados por pares de rolamentos de esfera. O eixo fica encaixado, fixado por porcas em suas extremidades, em dois suportes verticais, que são usualmente de madeira ou de ferro, firmemente fixados à base da máquina, que é usualmente de madeira. Nos mancais existem duas pequenas polias, que são acionadas pelas polias maiores R-R’, montadas sobre outro eixo abaixo dos discos, apoiado em mancais montados nos suportes verticais, e acionadas por uma manivela K. Os cordões que conectam as polias podem ser de couro, borracha, etc. Um dos cordões é montado cruzado, para que os discos girem em sentidos opostos. Colados às faces exteriores dos discos, há séries de setores metálicos a, formando um padrão simétrico. Estes setores possuem bordas arredondadas para minimizar perdas de carga, e são mais largos nas bordas que no interior, de modo a manterem distâncias constantes entre suas bordas laterais. Podem ser construídos com folhas de alumínio não muito finas, ou de outros metais, como estanho, que era usado originalmente, ou latão, e devem ser firmemente colados aos discos, com uma cola de contato, por exemplo. Podem possuir ressaltos para evitar que as escovas dos neutralizadores (ver a seguir) toquem os discos. Duas barras metálicas neutralizadoras F são dispostas uma em frente a cada disco, cruzadas uma em relação à outra, em um ângulo de 60 graus, aproximadamente, com a horizontal. Estas barras são usualmente fixadas em anéis metálicos montados no mesmo eixo dos discos, e devem poder ser ajustadas em diversos ângulos de inclinação, sendo fixadas no lugar pela pressão de parafusos nos anéis. Nas pontas das barras neutralizadoras, são montadas escovas de finos fios metálicos, que tocam levemente os setores metálicos nos discos. Boas escovas podem ser construídas com finos fios de níquel-cromo, como os usados em resistores de fio. Textos antigos recomendam fios de prata ou lâminas feitas de folhas finas de bronze. Também podem ser usadas escovas feitas com tiras de borracha condutiva ou fibras de carbono, o que é mais resistente a quebras, mas pode causar dificuldades de excitação. Uma forma simples de fazer estas escovas é inserir alguns fios em furos, um em cada extremidade das barras neutralizadoras, fixando-os no lugar com um palito de madeira e um pouco de cola, ou por um parafuso. Os coletores de carga são duas peças metálicas em formato de U, m-m’, n-n’, que circundam os discos nas laterais da máquina. Estas peças possuem séries de pontas voltadas na direção dos discos, que terminam a uma pequena distância destes, sem nunca tocá-los (o toque acidental destas pontas nos discos é a causa mais comum de destruição destas máquinas). Uma boa idéia é usar pontas de material macio, como folha de alumínio denteada, como proteção contra toques acidentais. Simples lâminas retas de folha metálica fina também podem ser usadas. Os coletores são suportados por longos suportes isolantes S-S’, que podem ser de vidro, acrílico, ou outro bom isolante (nunca usar madeira ou similares, que não isolam o suficiente), fixados na base da máquina. No mesmo suporte, são fixados os terminais do faiscador A-B, que deve poder girar, movimentado pelos longos cabos isolantes H. O faiscador termina em bolas metálicas, que podem possuir bolas menores montadas sobre elas. Estas bolas menores permitem a geração de faíscas maiores que o normal, se uma bola menor estiver no pólo positivo, com os terminais inclinados na direção do pólo negativo. É conveniente que seja possível ajustar a posição dos coletores de carga, deslizando os condutores que os conectam ao faiscador dentro das bolas que formam o tôpo dos suportes isolantes, com um parafuso para fixação. A rotação do faiscador é usualmente conseguida pelo uso de pinos fendidos fixos nas bolas onde se conectam os cabos H, que entram nos condutores que vão aos coletores de carga, que são tubos ôcos. As estruturas dos coletores de carga e terminais são classicamente construídas com tubos ou varetas de latão, e bolas também de latão. Outros materiais podem também ser usados, como tubos de alumínio, e as bolas, exceto as dos terminais, podem ser de madeira, com conexões internas reforçadas eletricamente por molas. Em toda a montagem dos terminais, não devem existir pontas, exceto as dos coletores de carga, ou ângulos agudos, sendo todas as superfícies arredondadas e polidas, para evitar perdas de carga para o ar. Para a obtenção de faíscas fortes, dois capacitores tipo garrafa de Leyden, L-L’ são conectados aos terminais, através de pontes removíveis. As garrafas de Leyden são longos tubos isolantes fechados na parte inferior, como tubos de ensaio ou copos altos de vidro envernizado ou acrílico, possuindo folhas de metal coladas nas faces interior e exterior, na parte inferior. As folhas interiores se conectam através de varetas de metal que cruzam as tampas das garrafas às pontes removíveis vistas na figura. As folhas externas se conectam aos suportes das garrafas, e através de fios a uma chave, visível sob a frente da base na figura, que as interconecta. Com a chave fechada, os dois capacitores estão ligados em série. Com a chave aberta, a alta resistência elétrica da base de madeira fica no meio do circuito, o que produz curiosas faíscas enfraquecidas. É comum também usar garrafas de Leyden penduradas nos terminais.

Operação:

A manivela deve ser girada de forma que os discos passem pelos coletores de carga, e a seguir pelas escovas neutralizadoras adjacentes (sentido horário na figura). Quando um setor metálico passa por uma escova, ele é influenciado pelo disco oposto, e cargas opostas às do disco oposto são atraídas para ele. Como são vários setores influenciando um só, e também existe o efeito dos setores em alto potencial nas laterais da máquina, o setor aterrado pela escova recebe mais carga do que havia nos setores do disco oposto. Estes setores carregados vão a seguir servir de fontes de influência para os setores do outro disco, realimentando positivamente o efeito. As cargas geradas crescem exponencialmente, até que perdas por faiscamento, controladas pelas dimensões dos discos, limitam a tensão máxima que pode ser atingida. O maior comprimento de faísca que pode ser obtido é dado aproximadamente pela soma das distâncias entre setores metálicos adjacentes ao longo de 1/3 de um disco. Isto ocorre porquê a partir de certa distância o faiscamento ocorre entre os setores, passando pelas barras neutralizadoras. Esta distância usualmente corresponde a 1/3 a 1/4 do diâmetro dos discos. As áreas entre as escovas neutralizadoras nas áreas superior e inferior dos discos são onde as cargas são geradas. Nestas áreas a tensão entre os discos é pequena, o que serve para minimizar perdas por faiscamento para a estrutura da máquina, permitindo uma construção compacta. As faces interiores dos discos permanecem neutras, pois a reversão de polaridade nas faces exteriores duas vezes a cada volta dos discos não permite que cargas parasitas se acumulem aí. A acumulação de cargas parasitas no lado oposto de placas carregadas é um problema com todas as máquinas eletrostáticas anteriores à de Wimshurst, com apenas um disco rotativo, causando reversões periódicas de polaridade, inexistentes na máquina de Wimshurst. Notável exceção é a máquina de Holtz de segundo tipo (1867), que é considerada uma ancestral direta da máquina de Wimshurst, o que causou alguma polêmica na época, com Holtz mostrando ter inventado essencialmente a mesma estrutura de Wimshurst nos 1860s. Alguns textos da época chamam a máquina de Wimshurst como máquina de Wimshurst-Holtz.

As máquinas eletrostáticas são sempre sensíveis à humidade do ar, tendo seu rendimento reduzido ou mesmo deixando de funcionar em condições de alta humidade. A máquina de Wimshurst é uma das menos sensíveis, mas níveis de humidade acima de 80% podem prejudicar, embora dificilmente impedir, seu funcionamento. Por isto, é melhor operar estas máquinas em ambiente com ar condicionado, e sem muitas pessoas por perto da máquina. Algum aquecimento com o uso de um secador de cabelos ou exposição ao Sol pode ajudar a secar a máquina antes da operação, mas se o ar estiver muito húmido o efeito dura pouco. Perfeita limpeza dos discos e dos isoladores é também importante para bom desempenho. Máquinas eletrostáticas tem forte tendência de atrair poeira do ar, que deve ser removida das superfícies periodicamente. Para a auto-excitação funcionar, com a máquina multiplicando rapidamente pequenos desbalanços de cargas inicialmente existentes, ou gerados por atrito ou potencial de contato pelas escovas, é necessário bom contato elétrico dos setores metálicos nos discos com as escovas neutralizadoras. Estas devem sempre ser mantidas em bom estado.

Uma máquina de Wimshurst com discos de 30 cm pode produzir por volta de 100 kV de tensão, e uma corrente da ordem de 20 uA. A corrente é proporcional à velocidade de rotação e à área dos discos ocupada pelos setores, sendo portanto proporcional ao quadrado do diâmetro dos discos para mesma velocidade angular de rotação. A potência mecânica requerida é proporcional à potência elétrica gerada, sendo portanto proporcional ao cubo do diâmetro dos discos e à velocidade de rotação. O rendimento na conversão de energia é bastante incerto, devido às muitas perdas, mas pode chegar a ser da ordem de 25%.

Uma importante variação da máquina de Wimshurst é a máquina de Bonetti (1894), que, com a mesma estrutura básica, usa discos limpos, sem setores, e escovas múltiplas nos neutralizadores, ou pentes com pontas. Com isto obtém-se uma maior eficiência, com toda a área ativa dos discos usada para transporte de carga. Esta máquina pode facilmente produzir faíscas com comprimento de mais de metade do diâmetro dos discos, e uma corrente um pouco maior. A auto-exitação, entretanto, é perdida, sendo necessário excitar a máquina a partir de uma fonte externa de alta tensão, como uma outra máquina eletrostática. A figura mostra uma máquina de Voss com um dos terminais posicionado oposto a um dos neutralizadores da máquina de Bonetti. Isto atrai cargas do neutralizador para a superfície do disco de trás, e inicia o processo de partida da máquina. Um simples bastão carregado pode servir, em condições de baixa humidade.

Há outras variações, também aplicáveis à máquina de Bonetti, envolvendo os coletores de carga. É possível coletar cargas de apenas um dos discos, com praticamente o mesmo rendimento, pois quando uma área de um disco se descarrega para um coletor de carga, ocorre uma redução de tensão na área correspondente do disco oposto, por efeito capacitivo, o que praticamente dobra a corrente de descarga. A idéia foi usada em uma máquina sem setores descrita por Holtz e Poggendorff em 1869.

Outra modificação é o sistema de Schaffers (1885), que desloca as posições dos coletores de carga, desviando para eles parte das correntes que iriam para os neutralizadores. Resulta uma versão da máquina de Holtz do segundo tipo, capaz de gerar até o dôbro da corrente. A idéia, entretanto, reduz a máxima tensão que pode ser gerada, por aproximar os coletores de carga dos neutralizadores.

O programa WMD pode ser usado para avaliar o projeto de uma máquina de Wimshurst, prevendo o comprimento das faíscas geradas e a máxima corrente de saída, e calculando o formato ideal para os setores.

Máquinas múltiplas